中国电力规划设计协会文件

电规协〔2025〕237号

关于召开中国电力规划设计协会 2025 年电控 专委会电气专业工作会暨技术交流会的通知

各相关单位:

根据中国电力规划设计协会电控专委会(以下简称电控专委会)2025年度工作计划安排,定于2025年10月15日至17日在重庆召开2025年电气专业工作会暨技术交流会。会议由电控专委会主办,华北电力设计院有限公司协办,现将有关事项通知如下:

一、会议内容

- 1. 2024-2025 年专委会工作汇报;
- 2. 电控专委会电气专业委员调整;
- 3. 新型长时储能技术交流(液流电池和压缩空气储能电气技

术交流);

- 4. 新能源国际项目精细化设计技术交流;
- 5. 智能化数字化监测技术交流(远距离输电电缆状态监测技术交流);
- 6. 环保油、气在电气设备的应用(环保气体在开关设备的应用(GIS、GIL),环保脂油在变压器设备的应用):

请各参会单位积极准备会议交流材料(如论文,工程项目介绍、新产品介绍等),用于会议交流。优秀论文将推荐到《电力勘测设计》期刊发表。

二、会议时间和地点

会议时间: 2025年10月15日至17日,10月15日报到。

会议地点: 重庆国贸格兰维酒店

酒店地址: 重庆市渝中区青年路77号

酒店电话: 023-63666666

三、参会人员

参会单位及人员名单详见附件 1, 其他有交流需求的会员单位亦可报名参加。

四、会议费

- 1.会议费:会员单位 1500 元/人,非会员单位 3000 元/人。
- 2.会议费对公转账或现场缴纳均可。对公转账请汇至以下开户行及账号,并在附言中备注会议简称。收到汇款后根据回执表填写的发票信息开具增值税发票。

账户名: 中国电力规划设计协会

账 号: 0200022309014401935

开户行:中国工商银行股份有限公司北京六铺炕支行

五、会议联系人

陶 蕾 华北电力设计院有限公司

联系电话: 010-82286157 13501001398

投稿及回执电子邮箱: taolei@ncpe.com.cn

六、其它要求

1. 会议期间住宿统一安排,费用自理。

- 2. 会议不设接站,请参会代表自行前往会议地点。酒店位置 及交通线路参见附件 2。
- 3. 请各单位于 9 月 30 日前扫描文件中"投票云服务"二维码填写会议回执。

附件: 1. 参加会议单位及人员名单

- 2. 酒店位置及交通路线
- 3. 中文论文编排格式要求

附件 1

参加会议单位及人员名单

序号	单位	代表姓名	备注
1	中国电力规划设计协会	自定	
2	电力规划总院有限公司	娄慧波	
3	中国电力工程顾问集团华北电力设计院有限公司	曾小超	
4	中国电力工程顾问集团华北电力设计院有限公司	徐春丽	特邀
5	中国电力工程顾问集团华北电力设计院有限公司	陶蕾	
6	中国电力工程顾问集团华北电力设计院有限公司	田僖	特邀
7	中国电力工程顾问集团中南电力设计院有限公司	黄生睿	
8	中国电力工程顾问集团中南电力设计院有限公司	汪毅	
9	中国电力工程顾问集团中南电力设计院有限公司	卢艳林	
10	中国电力工程顾问集团中南电力设计院有限公司	周才洋	特邀
11	中国电力工程顾问集团东北电力设计院有限公司	魏显安	特邀
12	中国电力工程顾问集团东北电力设计院有限公司	潘海	
13	中国电力工程顾问集团西北电力设计院有限公司	张欢畅	
14	中国电力工程顾问集团华东电力设计院有限公司	徐剑浩	特邀
15	中国电力工程顾问集团华东电力设计院有限公司	汪元姣	
16	中国电力工程顾问集团西南电力设计院有限公司	郭世峥	
17	国核电力规划设计研究院有限公司	王丽	
18	国核电力规划设计研究院有限公司	陆建莺	

序号	单位	代表姓名	备注
19	深圳中广核工程设计有限公司	翟长春	
20	中国电建集团河北省电力勘测设计研究院有限公司	王杰	
21	中国电建集团河北省电力勘测设计研究院有限公司	彭昌	
22	中国能源建设集团山西省电力勘测设计院有限公司	霍志鹏	
23	中国能源建设集团山西省电力勘测设计院有限公司	李斌	
24	内蒙古电力勘测设计院有限责任公司	白雪松	
25	内蒙古电力勘测设计院有限责任公司	赵忠立	
26	中国能源建设集团江苏省电力设计院有限公司	陈海锋	
27	中国能源建设集团江苏省电力设计院有限公司	孙若笛	
28	中国能源建设集团浙江省电力设计院有限公司	张乐群	
29	中国电建集团福建省电力勘测设计院有限公司	李宁凯	
30	山东电力工程咨询院有限公司	李玮	
31	中国电建集团河南省电力勘测设计院有限公司	于广耀	
32	中国能源建设集团广东省电力设计研究院有限公司	汪少勇	
33	中国能源建设集团广西电力设计研究院有限公司	甘焱	
34	中国能源建设集团新疆电力设计院有限公司	马勇	
35	中国电建集团江西省电力设计院有限公司	郭小斌	
36	中国电建集团江西省电力设计院有限公司	林日明	
37	中国能源建设集团安徽省电力设计院有限公司	刘军	
38	中国能源建设集团安徽省电力设计院有限公司	丁刘元	
39	中国能源建设集团湖南省电力设计院有限公司	杨红	

序号	单位	代表姓名	备注
40	中国能源建设集团湖南省电力设计院有限公司	魏劼	
41	中国电建集团贵州电力设计研究院有限公司	主勇	
42	湖北省电力勘测设计院有限公司	蔡阳	
43	湖北省电力勘测设计院有限公司	王辉	
44	中国能源建设集团甘肃省电力设计院有限公司	王辉君	
45	中国电建集团青海省电力设计院有限公司	李书山	
46	中国能源建设集团云南省电力设计院有限公司	潘磊	
47	中国能源建设集团云南省电力设计院有限公司	韩劲苗	
48	中国电建集团吉林省电力勘测设计院有限公司	宋跃强	
49	中国能源建设集团黑龙江省电力设计院有限公司	胡阳	
50	中国能源建设集团陕西省电力设计院有限公司	白鹤	
51	四川电力设计咨询有限责任公司	秦海	
52	中国华电科工集团有限公司	马洪涛	
53	山东电力建设第三工程有限公司工程咨询院	刘淑君	
54	山东电力建设第三工程有限公司工程咨询院	吴乾	
55	东方电气(成都)工程设计咨询有限公司	谭泳玲	
56	中国能建集团辽宁电力勘测设计院有限公司	杨轶	
57	中国电建集团华东勘测设计研究院有限公司	沈惠良	
58	中国电建集团北京勘测设计研究院有限公司	徐珊珊	

注:特邀参会人员不占用分配参会人员名额。

附件 2

酒店位置及交通路线

一、酒店位置

重庆国贸格兰维酒店(重庆市渝中区77号)

二、交通出行路线(仅供参考,以实际情况为准)

- 1. 重庆江北国际机场:乘坐轨道交通 10 号线曾家岩站转轨道交通 2 号线到临江门地铁站 (3 号出口)步行约 400km 米到达酒店。出租车约 24 公里 30 分钟。
- 2. 重庆北站: 乘坐轨道交通 10 号线曾家岩站转轨道交通 2 号线到临 江门地铁站 (3 号出口) 步行约 400km 米到达酒店。出租车约 9 公里 22 分钟。

中文论文编排格式要求

对于所投稿件,要求作者按照科技期刊的编排格式提出的要求对稿件修改,具体规定如下:

- 1. 来稿要求重点突出,论述严谨,文字简练,避免长篇公式推导(必要的推导则可列入附录)。论文的排序为:中文标题、作者姓名、工作单位、中文摘要、中文关键词、中图分类号、英文标题、作者汉语拼音、工作单位英译名(包括邮政编码和所在城市汉语拼音)、英文摘要、英文关键词(4-8个),正文、参考文献、附录、作者简介(第一作者和通信作者,若第一作者同时为通信作者,补充第二作者简介)。
- 2. 摘要为独立于正文的文字,应包括目的、方法、主要结果、主要结论等内容, 且用第三人称写法。中文摘要篇幅为300字左右,英文摘要与中文摘要对应。具体要求 参见附录。
- 3. 参考文献应优先选择最近5年的论文且按文中出现的先后次序排列,在引用文句后的右上角标明参考文献序号。勿引用尚未公开出版的资料。

参考文献的著录格式如下:

图书类: 序号作者. 书名. 版次. 出版地: 出版者, 出版年. 例如:

- [1]王兆安,杨君,刘进军.谐波抑制和无功功率补偿[M].北京:机械工业出版社,1998.
- [2] (美) L. 科恩. 时频分析:理论与运用. 白局宪译[M]. 西安:西安交通大学出版社,2000.
- **论文集类**: 序号作者. 论文题目. 会议名称, 会址(国家、城市名), 开会日期, 论文所在卷: 起止页. 例如:
- [3]钱照明,张军明,谢小高等. 电力电子系统集成研究进展与现状[C]//第二届电工技术前沿论坛,2005: 1-15.

标准类: 序号标准号,标准题目.

[4]IEC61000-4-15 , Testing and measurement techniques : flickermeter-functional and design specifications.

期刊类: 序号作者. 论文题目[J]. 期刊名, 出版年, 卷 (期): 起止页

中文期刊类参考文献著录格式如下:

[5] 钱照明, 张军明, 谢小高, 等. 电力电子系统集成研究进展与现状[J]. 电工技术学报, 2006, 21(3): 1-14.

英文期刊的著录格式如下:作者的姓在前,名的首字母放在其后。作者至少列出三位。

[6] Charytoniuk V, Chen M S, Kotas P, et al. Demand forecasting in power distribution system using nonparametric probability density estimation[J]. IEEE Transactions on Power Systems, 1999, 14(4):1200-1206.

学位论文格式: 序号作者. 论文题目: [D]. 学校单位地址: 学校院所, 年.

[7] 黄文新. 笼型异步发电机——电力电子变换器高压直流发电系统的研究: [D]. 南京: 南京航空航天大学,2002.

- 5. 文中所用技术名词前后应一致,新名词应注明原文或加注释。计量单位的名称、符号一律按《中华人民共和国法定计量单位》中的规定使用。
- 6. 外文字母请用印刷体书写,分清大小写。容易混淆的英文、希腊字母要书写清 楚。字母带有上下角标时,要明显区分其相对位置。
- 7. 插图应少而精,一般不超过8幅。务必保证图形清楚、规范,避免扫描其他文章的图形。能用文字说明的尽量不用插图。插图绘制要大小适宜(半栏或通栏,可能时尽量用半栏)、工整、匀称,波形图横纵坐标均要标明物理量及单位,尽量使用符号。图中请用6号Times New Roman及宋体字,图号和图题用中英文对照。
 - 8. 文中表格按顺序编号,表题用中英文对照,表文中尽量使用符号。
 - 9. 请勿一稿多投。未被录用的稿件不退原稿,请作者自留底稿。
 - 10. 投稿前请确认无误后再投稿,一经投出,不要反复更改。

附录(写中英文摘要参考)

- 1. 文摘要尽量简短,尽可能删掉课题研究的背景信息。
- 2. 文摘中出现的数据应是最重要, 最关键的。
- 3. 不要自己标榜自己的研究结果。
- 4. 二次文献信息将脱离原文独立存在,故文摘中不能出现图表参数据。
- 5. 文摘中的内容应在正文中出现, 文摘不能对原文进行补充和修改。
- 6. 文摘中的缩写名称在第一次出现时要有全称。
- 7. 文摘的句子应尽量简短, 主谓要搭配。

论文样本

::

作者姓名 1. 作者姓名 2. 字体采用楷体 GB2312 四 号居中, 空格分隔, 单倍 行距

发电机与 Boost 斩波型引 非线性速度控制

中文标题小一号黑体,居 中, 段前1行, 段后0.8 行, 单倍行距

1. 作者工作单位(高校要到院系 一级,包括所在城市和邮编 2. 字体采用 10 号仿宋_GB2312 空 格分隔,单倍行距

XXX1 XXX1,2 业大学电工电能新技术天津市重点实验 工油土堂电气与自动化工程学院 天津

字体采用仿宋_GB2312 10 号, 单倍行距, 首行缩进2字符,两端对齐,左右缩进2 字符。中文摘要为独立于正文的文字,应 包括目的、方法、主要结果、主要结论等 内容, 且用是第三人称写法。摘要篇幅为

此结构具有较强的非线性, 采用 中图分类号自查,如果是

交叉领域可以写两个,并用 支贴 式水砂回步发电机 分号间隔

中文关键词(4~8个)字体采用仿宋 GB2312 10号, 单倍行距 空格分隔,首行缩进2字符,左右缩进

行距

四号 Times New Roman 加 ar Speed Control for a Perma 2字符 粗字体,居中排,单倍行 Concrator and the Boost-Chopper Converter

10号 Times New Roman 字 体,斜体,居中排,单倍

(1. Tianjin Key Laboratory of Advanced Technology of Electrical Engineering Tianjin Polytechnic University Tianjin 300387 China

2. School of Electrical Engineering and Automation Tianjin University Tianjin

同步风电系统电机侧变换器的

Abstract A diode bridge rectifier followed by a boost chopper circuit is a common topology of the generator side converter for a direct driven permanent magnet synchronous generator

Geng Qiang Xia Changliang 2

10号 Times New Roman 字 体, 居中排

(PMSC) based wind enserting it is difficult maintain good dynamic performance within a normal operating range under the nal-integral(PI) controller.

Keywords: Surface permanent magnet synchronous generator (SPMSG), Boost chopper circuit, input-output feedback linearization (IOFL), optimal control theory

0 引言

标题 3 黑体小四, 左对 齐, 段前 8pt, 段后 8pt,

近年来随着风力发电 单倍行

能源中所占的比重也迅速上升。1996年~2006年的 十年间,全球风电装机容量年平均增速为 28.6%; 截止到 2007 年末,全球风电装机总容量已接近 94000MWII。直驱式永磁风力发电系统具 可靠性高和维护成本低等优点[2]。

直驱式永磁风力发电系统中一种常见的拓扑结 构如图 1 所示[1], 其电机侧变换器由二极管整流桥 和 Boost 斩波电路组成,为叙述方便,文中将此结 构称为 Boost 斩波型变换器。

正文用双栏排版,栏宽相等,宽度为 22 字符, 间距 147 字符, 采用宋体 10pt, 英文用 10pt, Times New Roman 字体,两端对齐,首行缩 进2字符,单倍行距。

逆变器

图 1 Boost 新波型 直驱式永磁风电系统拓扑结构图 Fig.1 Topology of the direct driven PMSG-based wind energy conversion system with boost-chopper converter

图 1 中, u_A 、 u_B 、 u_C 分别 为发电机定子端电压; 感电流: 八次为

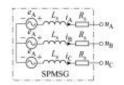
图中中文字体采用 6号华文中宋, 英文用 Times New Roman 字体

-10 -

直流侧电压; L为Boost电路升压电感; S₁为Boost 电路功率器件; C为直流侧电容。

与三相桥式全控变换器相比, Boost 斩波型变换器成本较低,结构较。 图标题小五号宋体,居中能在一定风速范围内 排,单倍行距已经对此类变换器进行,可以上。

永磁同步发电机、二极管整流桥和 Boost 斩波电路均具有较强的非线性,目前的控制策略多为普通的比例积分(Proportional-Integral,PI)控制[4-7]。普通 PI 控制器具有设计简单和适用性好等特点,但其是基于目标是单的控制器。但是由了系统变量。运行状态。表头用小五号黑体,英文和数字用小五号而具有动。 Times New Roman 加粗字体,居中排参数难于。表文中文用六号宋体,英文用 6 号 Times 给实际应制 New Roman 字体。


反馈: 其核心思想

系统代数地转换为全部或部分的线性系统,从而可以应用比较成熟的线性系统控制方法。由于在转换过程中并没有采用线性逼近的方法,即没有忽略高阶非线性项,因此该方法精确度较高。反馈线性化己广泛应用于电力电子[8-11]、电机控制[12-14]和分布式发电[15]等多个领域。

在现有的基础上,以表贴式永磁同步发电机 (Surface Permanent Magnet Synchronous Generator, SPMSG)为研究对象,首先根据二极管整流桥的换相点,将发电机每个电气周期分为6个区间,在每个区间内对发电机和 Boost 斩波电路进行整体非线性建模;然后分区间利用输入-输出反馈线性化方法将非线性系统转换为线性系统;最后根据线性最优控制原理对变换后的线性系统设计转速控制器,使系统具有良好的动态和稳态性能。

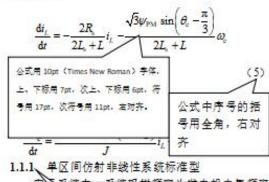
1 系统数学模型

 1.1 SPMSG 数学模型 数字用 Times New Roman 加粗字 SPMSG 等效电路及 体, 左对齐, 单倍行距

ム)SPMSG 等效电路

(b) 空间矢重图

图 2 SPMSG 等效电路和空间矢量图


Fig.2 The equivalent circuit and space vector diagram of SPMSG

在发电机每个电气周期内,二极管整流桥具有 6 个挟相点。忽略换相续流过程,将 A 相和 B 相同 导通且电流由 A 相流向 B 相的区间称为 A B 区间, 每个电气周期可依次分为 A B、A C、B C、B A、 A 和 C B 共 6 个区间,每个区间内的电压及电流关 见表 1。

表 1 不同区间内电压电流关系 The relationship between voltages and currents in different intervals

区间	M _O	4	5.	*
AB	ea-ea	4	-6	0
AC	MA-MC	th.	0	7/2
BC	et et	0	14	74
BA	60.T64	-8.	14	0
CA	W-W	-6_	0	8
CB	uc = ua	0	-b	D.

以 AB 区间为例,由式 (1) 、式 (4) 和表 1 整選可得

以发电机电气角速度为输出变量,作如下变量警换

度和电感电

输入变量,

$$\begin{cases} x_1 = i_L \\ x_2 = \omega_e \\ u = d \end{cases}$$
 (7)

4 结论

针对由表贴式永磁同步发电机、二极管整流桥和 Boost 斩波电路组成的强非线性系统,分区间建立了整体非线性数学模型,并在单区间内采用输入-输出反馈线性化方法将非线性系统转换为线性系统,在此基础上设计了转速线性最优控制器。该设计方法的数学转换过程较为简单,虽然涉及较多参数,但大部分参数可以预先计算;线性最优控制器的设计理论较为成熟,系统参数整定方法较为简单,且不同区间内控制器的参数相同。

论点: 在有从共主的的开始的 斯克开战通 同向支路, 也有 论点用黑体, 内容用宋体

证明, 设因 证明用黑体,内容用宋体 路路的方向在公共支路 a-d-b 上必然相反。

附录 仿真系统参数

- (2) 推导了直流 ▼ 内容用小五号宋体 今后研究各种调制方式对起动过程的影响奠定了基础。
- (3)利用占空比作为系统闭环调节的中间变量及时 调整 TSMC 的输出,达到输出方波电流、使电机快速起 动至给定转速的目的;实验验证了本文所提的控制策略 的正确性,为 TSMC-8/G 系统的进一步研究与实践奠定 了基础。

参考文献

- Xia Changliang, Song Zhanfeng. Wind energy in China: current scenario and future perspectives[J].
 Renewable and Sustainable Energy Reviews, 2009, 13(8): 1966-1974.
- [2] Zhang S, Tseng King Jet, Vilathgamuwa D M, et al. Design of a robust grid interface system for PMSG-based wind turbine generators[J]. IEEE Transactions on Industrial Electronics, 2011, 58(1):

316-328.

[3] 胡书举, 李建林, 许洪华. 永磁直驱风电系统变流 器拓扑分析[J]. 电力自动化设备, 2008, 28(4): 77.81

Hu Shuju, Li Jianlin, Xu Honghua. Analysis of converter configuration for direct-drive wind power system with December 2. Electric Power Automation

参考文献小五号字, 左对齐

应优先选择最近 5 年的论且接文中出现的先后次序排列。在引用文句后的 右上角标明参考文献序号,参考文献 10 篇以上。

书类: 序号 作者,书名,版次,出版地: 出版者, 出版年,

期刊类: 序号 作者,论文题目,期刊名,出版年, 卷(期): 起止页

中国电力规划设计协会秘书处

2025年8月21日印发